Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(3-carboxypyridine-2-carboxylato- $\kappa^2 N, O^2$)zinc(II)

Hossein Aghabozorg,^a* Elahe Sadr-khanlou,^a Janet Soleimannejad^b and Harry Adams^c

^aDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, ^bDepartment of Chemistry, Ilam University, Ilam, Iran, and ^cDepartment of Chemistry, Sheffield University, Sheffield S3 7HF, England Correspondence e-mail: aghabozorg@saba.tmu.ac.ir

Received 2 May 2007; accepted 22 May 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.069; data-to-parameter ratio = 13.8.

The centrosymmetric title compound, $[Zn(C_{14}H_8N_2O_8)_2 (H_2O)_2]$, shows a distorted octahedral coordination. The four donor atoms of the two coplanar 3-carboxypyridine-2-carboxylate or (2,3-pydcH)⁻ anions form a square-planar arrangement around the Zn^{II} centre. This crystal structure has an infinite three-dimensional framework. The stabilizing interactions existing in the crystal structure are intermolecular $O-H\cdots O$ and very strong intramolecular $O-H\cdots O$ hydrogen bonds. H atoms of coordinated water molecules participate in hydrogen-bonded chains described by $C_2^2(12)$ and $C_1^1(8)$ graph-set descriptors.

Related literature

Several complexes of zinc with pyridine-2,6-dicarboxylic acid have been reported (Aghajani *et al.*, 2006, and references therein). There is also a report of a similar copper compound with pyridine-2,3-dicarboxylic acid (Xiang *et al.*, 2006).

Experimental

Crystal data $[Zn(C_{14}H_8N_2O_8)(H_2O)_2]$ $M_r = 433.63$ Monoclinic, $P2_1/n$ a = 9.304 (3) Å

b = 7.909 (3) Å c = 10.276 (4) Å $\beta = 95.317 (6)^{\circ}$ $V = 752.9 (5) \text{ Å}^{3}$

Z = 2Mo $K\alpha$ radiation $\mu = 1.70 \text{ mm}^{-1}$

Data collection

Bruker SMART diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
$T_{\min} = 0.565, T_{\max} = 0.588$
(expected range = 0.530 - 0.552)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ 124 parameters $wR(F^2) = 0.069$ H-atom parameters constrainedS = 1.12 $\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$ 1706 reflections $\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	2.0602 (12)	Zn1-O5	2.1858 (13)
Zn1-N1	2.0691 (14)		
O1-Zn1-N1 ⁱ	101.61 (6)	O1-Zn1-N1	78.39 (6)

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5A\cdots O3^{ii}$	0.95	1.88	2.8035 (19)	164
$O5 - H5B \cdots O3^{iii}$	0.95	1.89	2.8358 (18)	174
$O5-H5B\cdots O4^{iii}$	0.95	2.64	3.226 (2)	121
$O4-H4A\cdots O2$	0.86	1.55	2.4017 (17)	173

Symmetry codes: (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) -x + 2, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the Teacher Training and Ilam Universities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2016).

References

- Aghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). Acta Cryst. E62, m830-m832.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). *SMART* (Version 5.059) and *SAINT-Plus* (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SADABS. Version 2.01. University of Göttingen, Germany.
- Xiang, J.-F., Li, M., Wu, S.-M., Yuan, L.-J. & Sun, J.-T. (2006). Acta Cryst. E62, m1122–m1123.

metal-organic compounds

T = 150 (2) K

 $R_{\rm int} = 0.023$

 $0.38 \times 0.38 \times 0.35$ mm

8225 measured reflections 1706 independent reflections

1575 reflections with $I > 2\sigma(I)$

supplementary materials

Acta Cryst. (2007). E63, m1769 [doi:10.1107/S1600536807025032]

Diaquabis(3-carboxypyridine-2-carboxylato- $\kappa^2 N, O^2$)zinc(II)

H. Aghabozorg, E. Sadr-khanlou, J. Soleimannejad and H. Adams

Comment

The lattice consists of $[Zn(2,3-pydcH)_2(H_2O)_2]$ complexes resulted by a doubly monoprotonated (2,3-pydcH)⁻ as a bidentate ligand. The presence of this bidentate ligand leads to a neutral complex and does not allow the 2,9-dimethyl-1,10-phenanthroline Lewis base to crystallize in the produced network. The asymmetric unit of compound, $[Zn(2,3-pydcH)_2(H_2O)_2]$ is presented in Figure 1. The metal center is hexacoordinated by two (2,3-pydcH)⁻ bidentate ligand and two water molecules. The geometry around Zn^{II} center is distorted octahedral. The four donor atoms of the two (2,3-pydcH)⁻ anions form a square planar arrangement around Zn^{II} center. The rings are almost coplanar (RMS deviation 0.0057 Å). In construction of this crystal which has an infinite three dimensional framework based on [100], [001] and [010] vectors, the hydrogen bonding intermolecular interactions play the essential role. The stabilizing interactions existing in the crystal lattice are intermolecular O–H···O and very strong intramolecular O–H···O type hydrogen bonds.

Hydrogen atoms of coordinated water molecules participate in hydrogen bonded chains described by $C_{2}^{2}(12)$ and $C_{1}^{1}(8)$ graph set descriptors. Thus, the three-dimensional supramolecule structure for $[Zn(2,3-pydcH)_2(H_2O)_2]$ is confirmed.

Experimental

To a 10 ml of a stirring aqueous solution of 2,9-dimethyl-1,10-phenathroline (0.104 g, 0.5 mmol) and pyridine-2,3-dicarboxylic acid (0.0836 g, 0.5 mmol), was added a 0.5 molar equivalent of $ZnSO_4$. TH_2O (0.0727 g, 0.25 mmol) at room temperature. A neutral zinc(II) complex, [$Zn(2,3-pydcH)_2(H_2O)_2$], was isolated at pH 3.0 as a colorless crystals. Slow evaporation of the solvent during 10 days resulted in product complexes. Recrystallization of resultants for several times leads to X-ray quality crystals.

Figures

Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bonds are shown by dashed lines.

Fig. 2. Packing diagram of (I) with H-bonds with dashed lines. H atoms not involved in H-bonds omitter for clarity.

$Diaquabis(3-carboxypyridine-2-carboxylato-\kappa^2 N, O^2)zinc(II)$

Crystal data

 $[Zn(C_{14}H_8N_2O_8)(H_2O_1)_2]$ $M_r = 433.63$ Monoclinic, $P2_1/n$ a = 9.304 (3) Å b = 7.909 (3) Å c = 10.276 (4) Å $\beta = 95.317 \ (6)^{\circ}$ $V = 752.9 (5) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART diffractometer	1706 independent reflections
Radiation source: fine-focus sealed tube	1575 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
Detector resolution: 100 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 150(2) K	$\theta_{\min} = 2.8^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)	$k = -10 \rightarrow 10$
$T_{\min} = 0.565, \ T_{\max} = 0.588$	$l = -13 \rightarrow 13$
8225 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.069$	$w = 1/[\sigma^2(F_o^2) + (0.0383P)^2 + 0.3534P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\text{max}} = 0.001$
1706 reflections	$\Delta \rho_{max} = 0.40 \text{ e } \text{\AA}^{-3}$
124 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

 $F_{000} = 440$

 $D_{\rm x} = 1.913 {\rm Mg m}^{-3}$ Mo Kα radiation

Cell parameters from 5661 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.8 - 27.5^{\circ}$

 $\mu = 1.70 \text{ mm}^{-1}$

T = 150 (2) K

Block, colourless

 $0.38 \times 0.38 \times 0.35 \text{ mm}$

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.5000	0.5000	1.0000	0.01651 (11)
N1	0.66631 (13)	0.66168 (17)	0.96316 (12)	0.0159 (3)
C1	0.77906 (16)	0.59130 (19)	0.90988 (14)	0.0147 (3)
C2	0.89688 (16)	0.6908 (2)	0.88011 (14)	0.0156 (3)
C3	0.88952 (17)	0.8644 (2)	0.90586 (15)	0.0189 (3)
H3	0.9665	0.9356	0.8855	0.023*
C4	0.77323 (18)	0.9340 (2)	0.96005 (16)	0.0206 (3)
H4	0.7688	1.0519	0.9771	0.025*
C5	0.66301 (17)	0.8268 (2)	0.98885 (15)	0.0187 (3)
Н5	0.5828	0.8721	1.0280	0.022*
C6	0.75688 (16)	0.39930 (19)	0.89076 (14)	0.0158 (3)
C7	1.03467 (16)	0.6349 (2)	0.82239 (15)	0.0179 (3)
01	0.63949 (11)	0.33806 (14)	0.91765 (11)	0.0181 (2)
O2	0.85601 (12)	0.31061 (14)	0.85009 (11)	0.0203 (2)
O3	1.13066 (12)	0.74039 (15)	0.81237 (12)	0.0218 (3)
O4	1.05136 (14)	0.48120 (15)	0.78668 (14)	0.0261 (3)
H4A	0.9861	0.4162	0.8134	0.031*
O5	0.60695 (12)	0.44082 (15)	1.19303 (11)	0.0201 (2)
H5A	0.6325	0.5429	1.2381	0.024*
H5B	0.6920	0.3741	1.1955	0.024*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01293 (15)	0.01436 (16)	0.02298 (16)	-0.00098 (8)	0.00569 (10)	-0.00054 (9)
N1	0.0137 (6)	0.0160 (6)	0.0182 (6)	0.0004 (5)	0.0023 (5)	0.0006 (5)
C1	0.0146 (7)	0.0143 (8)	0.0150 (7)	0.0005 (5)	0.0007 (5)	0.0006 (5)
C2	0.0137 (7)	0.0184 (8)	0.0148 (7)	0.0000 (6)	0.0017 (5)	0.0008 (6)
C3	0.0172 (7)	0.0186 (8)	0.0208 (7)	-0.0038 (6)	0.0022 (6)	0.0011 (6)
C4	0.0224 (8)	0.0144 (8)	0.0251 (8)	-0.0011 (6)	0.0027 (6)	-0.0009 (6)
C5	0.0173 (7)	0.0169 (8)	0.0224 (7)	0.0019 (6)	0.0045 (6)	-0.0002 (6)
C6	0.0163 (7)	0.0151 (8)	0.0159 (7)	-0.0005 (6)	0.0017 (6)	0.0010 (5)

supplementary materials

C7	0.01/19 (7)	0 0211 (8)	0.0179 (7)	0 0003 (6)	0.0021.(6)	0.0031 (6)
01	0.0149(7)	0.0211(8) 0.0158(5)	0.0173(7)	-0.0003(0)	0.0021(0) 0.0054(4)	-0.0009(4)
02	0.0171 (5)	0.0159(5)	0.0290(6)	0.0014 (4)	0.0031(1) 0.0073(4)	-0.0010(5)
03	0.0149 (5)	0.0225 (6)	0.0286 (6)	-0.0013(4)	0.0047 (4)	0.0033 (5)
04	0.0192 (6)	0.0209 (6)	0.0405 (8)	-0.0022(4)	0.0140 (5)	-0.0025(5)
05	0.0167 (5)	0.0196 (6)	0.0243 (6)	0.0018 (4)	0.0030 (4)	-0.0011 (5)
					()	
Geometric paran	neters (Å, °)					
Zn1—O1		2.0602 (12)	C3—C4		1	.377 (2)
Zn1—O1 ⁱ		2.0602 (12)	С3—Н3	i	0	0.9500
Zn1—N1 ⁱ		2.0691 (14)	C4—C5		1	.384 (2)
Zn1—N1		2.0691 (14)	C4—H4	Ļ	0	0.9500
Zn1—O5		2.1858 (13)	С5—Н5	i	0	0.9500
Zn1—O5 ⁱ		2.1858 (13)	C6—O1		1	.2489 (19)
N1—C5		1.334 (2)	C6—O2		1	.2604 (19)
N1-C1		1.3478 (19)	С7—ОЗ		1	.2333 (19)
C1—C2		1.406 (2)	С7—О4	Ļ	1	.283 (2)
C1—C6		1.543 (2)	O4—H4	A	0	0.8600
C2—C3		1.401 (2)	O5—H5	δA	0	0.9500
C2—C7		1.527 (2)	O5—H5	БВ	0	0.9500
O1—Zn1—O1 ⁱ		180.0	C3—C2	—С7	1	14.50 (13)
O1—Zn1—N1 ⁱ		101.61 (6)	C1—C2	—C7	1	28.45 (14)
O1 ⁱ —Zn1—N1 ⁱ		78.39 (5)	C4—C3	—C2	1	21.50 (15)
O1—Zn1—N1		78.39 (6)	C4—C3	—Н3	1	19.2
Ol ⁱ —Zn1—N1		101.61 (6)	C2—C3	—Н3	1	19.2
N1 ⁱ —Zn1—N1		180.0	C3—C4	C5	1	17.84 (15)
O1—Zn1—O5		89.34 (5)	C3—C4—H4		121.1	
O1 ⁱ —Zn1—O5		90.66 (5)	C5—C4	—H4	1	21.1
N1 ⁱ —Zn1—O5		89.25 (5)	N1—C5	—C4	1	21.79 (14)
N1—Zn1—O5		90.75 (5)	N1—C5	—Н5	1	19.1
O1—Zn1—O5 ⁱ		90.66 (5)	C4—C5	—Н5	1	19.1
O1 ⁱ —Zn1—O5 ⁱ		89.34 (5)	O1—C6	—O2	1	22.63 (14)
N1 ⁱ —Zn1—O5 ⁱ		90.75 (5)	O1—C6	—C1	1	17.58 (13)
N1—Zn1—O5 ⁱ		89.25 (5)	O2—C6	—C1	1	19.78 (13)
O5—Zn1—O5 ⁱ		180.0	O3—C7	/O4	1	20.60 (15)
C5—N1—C1		121.20 (13)	O3—C7	<u>—С2</u>	1	18.49 (14)
C5—N1—Zn1		122.53 (10)	O4—C7	—С2	1	20.90 (14)
C1—N1—Zn1		116.26 (10)	C6—O1	—Zn1	1	16.54 (10)
N1—C1—C2		120.60 (14)	C7—O4	—H4A	1	11.6
N1-C1-C6		111.00 (12)	Zn1—O	5—H5A	1	09.4
C2—C1—C6		128.40 (13)	Zn1—O	5—H5B	1	16.8
C3—C2—C1		117.05 (14)	Н5А—0	D5—H5B	1	06.8
Symmetry codes: ((i) $-x+1$, $-y+1$, $-z+2$	•				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$		
O5—H5A···O3 ⁱⁱ	0.95	1.88	2.8035 (19)	164		
O5—H5B···O3 ⁱⁱⁱ	0.95	1.89	2.8358 (18)	174		
O5—H5B···O4 ⁱⁱⁱ	0.95	2.64	3.226 (2)	121		
O4—H4A…O2	0.86	1.55	2.4017 (17)	173		
Symmetry codes: (ii) $x-1/2$, $-y+3/2$, $z+1/2$; (iii) $-x+2$, $-y+1$, $-z+2$.						

Fig. 2